Below you will find pages that utilize the taxonomy term “Architecture”
Posts
Read more
Precision Token-Based Billing Architecture
Atomic Token Tracking
Our system achieves 1:1 parity with upstream API token counts through:
class TokenTracker:
// Separate counters for input/output
input_counts: Map<ModelType, Integer>
output_counts: Map<ModelType, Integer>
// Matches upstream API counting precisely
method add_input_tokens(text):
count = precise_token_count(text, model_type)
input_counts[model_type] += count
method add_output_tokens(text):
count = precise_token_count(text, model_type)
output_counts[model_type] += count
Intelligent Token Counting
The counting system features:
- Language-Specific Calibration
function precise_token_count(text, model_type):
base_count = tiktoken_count(text) // Standard method
calibrated = base_count * calibration_factor(text)
return calibrated
function calibration_factor(text):
// Chinese characters are more efficient
chinese_ratio = calculate_chinese_ratio(text)
if chinese_ratio > 0.1:
return 0.82 + (0.18 * (1 - chinese_ratio))
// Emojis are counted more compactly
if contains_emojis(text):
return 0.65
// Code gets slight adjustment
if is_likely_code(text):
return 1.08
return 1.0
- Image Token Calculation
function count_image_tokens(width, height, detail_level):
if detail_level == 'high':
return min(width*height/784, 5120)
else:
return min(width*height/784, 1312)
Dual-Phase Billing
Input and output are billed separately with perfect upstream matching: